
'AD-Ai63 585 IMS DESIGN--ALTERNATIVES ANALYSIS AND STRATEGIES I/i
REVISION(U) ALFRED P SLOAN SCHOOL OF MANAGEMENT
CAMBRIDGE MA CENTER FOR I. M J ABRAHAM DEC 85 TR-17

UNCLASSIFIED N8939-88-K-8498 F/G 9/2 U

I

wjig

1.l ,.8
1.25 LA -

MICROCOPY RESOLUTION TEST C+$0T

NATIONAL BUREAU Of STANLPARDS 1%3-A

In
low

0

In

IMS Design--

Alternatives, Analysis,

and Strategies

Michael J. Abraham

Technical Report #17

Draft--April 1982

Modified--December 1985

DTIC

ELECTE

-fisW mBUTIO N S-rATEY cNb-"2K .. -i .N3 0 986':kq" | vd tat public Iteel _8P

Dmbu1'1on uiited---

Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

86 3 27

Contract Number N00039-80-K0498 /
Internal Report Number M010-8512-17

IMS Design--

* Alternatives, Analysis,

and Strategies

Michael J. Abraham

Technical Report #17

Draft--April 1982

Modified--December 1985

DTCC
.JAN 30 1986/:

Principal Investigator:

Professor S. E. Madnick

Prepared for: DEBTRNDTON STAT A

Naval Electronics Systems Command kppwvd tot publo teleasM

Washington, D.C.

-%

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (llon Data Entered)

rk REPORT DOCUMENTATION PAGE READ INSTRUCTIONS[BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 2. RECIPIENT'S CATALOG NUMBER

Technical Report #17 ~ 1I 3
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

IMS Design--Alternatives, Analysis, and
Strategies

6. PERFORMING ORG. REPORT NUMBER

MOIO-8512-17
7. AUTHOR(@) 4. CONTRACTOR GRANT NUM@ER(€)

Michael J. Abraham N00039-80-K0498

9. PERFORMING ORGANI!ATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK

Center for Information Systems Research AREA* WORK UNIT NUMEERS

Sloan School of Management, M.I.T.
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
December 1985

Naval Electronics Systems Command ,3 NUMBER OF PAGES
56

IS. MONITORING AGENCY NAME & ADDRESS(lf different from Controlllng Office) IS. SECURITY CLASS. (of thle report)

Unclassified
ISa. DECLASSIVICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abstract enterodin Block 20, I difforent frog Report)

WS. SUPPLEMENTARY NOTES

1S. KEY WORDS (Continue on reverse aide If noceesy aed identity by block number)

Data storage hierarchy, data base management system,
hierarchical decomposition, distributed control, data location

20. ABSTRACT (Continue an reverse aide Ii necessary end identity by block number)

Modern organizations are becoming increasingly reliant on
the storage and processing of very large data bases in support
of their accounting, operational control, and high-level
decision-makinq functions. It is expected that future high-
performance Data Base Management Systems will be required to
provide storage capacities and transaction rates several orders
of magnitude greater than those of any current systems. As

DD 1473 EDITION O' 1 NOV ISIS OBSOLETE
S/N 0102"014" 601

SECURITY CLASSIFICATION OF THIS PAGE (ftn Date Entered)

Unclassified
.L(-uJTY CLASSIFICATION OF THIS PAGEOW/sn Date Entered)

DBMS's become ever more integral parts of many organizations'
operations the costs of system failure or unavailability increase
correspondingly. Accordingly, there is a growing need for
"fault tolerant" systems which can provide continuous
availability in the presence of many types of internal component
failure (both hardware and software).

To meet the requirements for increased speed, capacity, and
availability the IMS Data Base Computer (INFOPLEX) employs a
highly parallel, distributed control architecture. The
preliminary INFOPLEX design consists of two logically and: i ' " physically separate components: a physical storage hierarchyand a functional hierarchy. The general structure of an INFOPLEX

data storage hierarchy has been developed and a preliminary set of
control algorithms has been proposed.

This report presents a refind architectural specification
and outlines a set of control algorithms which take advantage
of theoretical properties of INFOPLEX-like storage systems.
Sectiaip2 discusses the overall rationale for the INFOPLEX
hierarchical design concept. Sectieft3 presents the details of

o the design issues and tradeoffs related to performance and
reliability, and developes a general strategy for efficient
READ/WRITE control and reliable fault handling. Finally,
Sectie4m 4 summarizes this report, and indicates the directions
for further research.

12.

.
_

SECURITY CLASSIFICATION OF THIS PAGE(WhOfl DaO Ente ed)

% * - * ,.. .- .- -v, v%

% . .". . .', . c . ,. '' .- ,"

Table of Contents

1 INTRODUCTION ... 1

2 OVERVIEW OF DSH-III DESIGN.................................... 3
2.1 Introduction.-.........oo......o3
2.2 Basis of DSH-III Design,.....o.............. o.....o..... 4

2.2.1 Range of Storage Technologies.. o............o.4
2.2.2 Locality of Reference... o.................. 5
2.2.3 Hierarchical Decomposition and Distributed Control 7

3 DESIGN OF AN INFOPLEX STORAGE HIER.ARCHY,...................... o........ 10
3.1 Overview of System Topology....o... o............o.............0.10
3.2 User Interface-............... o............o.........13
3o3 Data Movement Strategies. o................ o.......14

3.3.1 Demand Paging with Replacement15
*3.3.2 Page Size Specification and Page Splitting17

3.3.3 Page Splitting and Redundant Data20
3.4 READ Strategies... 21

3.4.1 Data Location and READ-THROUGH 22
43.4.2 LRU Replacement... 25

3.4.3 Overflow Handling... 27
3.4.4 Multi-Level Inclusion (MIl) and Overflow Inclusion (MLOI) ... 31

3.4.4.1 Theoretical Basis for MIl and MLOI33
3.4.4.2 Performance Implications of MIl and MLOI ;...... 35

3.4.5 Implementation Issues for GLOBAL-LRU-SOP39
3.4.5.1 Pro-eviction of Pages39
3.4.5.2 LRU Update Epoch Selection42
3.4.5.3 LRU Update Synchronization42
3.4.5.4 Duplicate READ Request Handling43

3.5 WRITE Strategies.. 43
3.5.1 Initial Level 1 WRITE Processing45

*43.5.2 Alternative Store Policies 45
3.5.2.1 Store Through....................................... 48

*3.5.2.2 Store Replacement 48
3.5.2.3 Store Behind.. 48
3.5.2.4 Staged Store Through 49

3.5.3 Evaluation of Alternative Store Policies 50

4 SUMMARY AND FURTHER RESEARCH... 52

**Bibliography and References... 54

iSS

1 INTRODUCTION

Modern organizations are becoming increasingly reliant on the storage

and processing of very large data bases in support of their accounting,

operational control, and high-level decision-making functions. Contemporary

Data Base Management Systems (DBMS's) are capable of handling data bases on

the order of a trillion (1012) bits of data [Simo75], and can process

transactions at rates of up to 100 queries per second [Abe77]. However, it

is expected that future high-performance DBMS's will be required to provide

storage capacities and transaction rates several orders of magnitude greater

* $ than those of any current systems. It is not unreasonable to project

* requirements of a quadrillion (1015) bits and one million database accesses

per second [Madn77J.

As DBMS's become ever more integral parts of many organizations'

operations the costs of system failure or unavailability increase

*correspondingly. Accordingly, there is a growing need for "fault tolerant"

systems which can provide continuous availability in the presence of many

types of internal component failure (both hardware and software).

To meet the requirements for increased speed, capacity, and

availability the IMS Data Base Computer (INFOPLEX) employs a highly

- parallel, distributed control architecture. The preliminary INFOPLEX design

consists of two logically and physically separate components: a physical
storage hierarchy which consists of a series of micro-processor controlled

r* storage devices functioning as a very large (1015 bits) virtual memory; and

a functional hierarchy, consisting of a series of micro-processor clusters,

which provide user interfaces, security, and memory management facilities

* for an INFOPLEX database system [Hsu8O]. The general structure of an
6r '1-..

INFOPLEX data storage hierarchy has been developed and a preliminary set of

,'.
.,-.-

' 'v % t * - . - - - - . . % % % " . % . . " , ,% % ", "," .,. ', , ' '. . . .

control algorithms has been proposed [LaM79a].

This report presents a refined architectural specification and outlines

set of control algorithms which take advantage of theoretical properties

of INFOPLEX-like storage systems [Lam79b, Abra79]. Section 2 discusses the

overall rationale for the INFOPLEX hierarchical design concept. Section 3

presents the details of the design issues and tradeoffs related to

performance and reliability, and develops a general strategy for efficient

READ/WRITE control and reliable fault handling. Finally, Section 4

summarizes this report, and indicates the directions for further research.

. -2-

2 OVERVIEW OF DSH-III DESIGN

2.1 Introduction

The INFOPLEX Data Storage Hierarchy III (DSH-III) is a model for a very

large, high-speed, reliable storage system. The primary design objective of

DSH-III is to provide a user (in particular the INFOPLEX Functional

Hierarchy) with a very large, high-speed virtual address space. As will be

seen, DSH-III takes complete responsibility for all physical data

management, control of the various storage devices in the system, and

recovery from almost all types of single-component failures. By

0 incorporating the intelligence needed to perform these functions into the

storage system, DSH-III is able to provide a user with a very simple, clean,

easy to use interface. In particular, DSH-III can provide almost complete

memory system functionality to a user through two primitive operations --

READ and WRITE.

While this paper presents the details of only two primitive operations

-- READ and WRITE -- additional primitives can be added as experience

indicates in order to increase the usability and flexibility of DSH-III. A

partial list of such primitives might include:

TESTANDSET - provides an atomic conditional update operation

which can be used to support P and V [Dijk68]

synchronization operations;

* SETSECURE - allows a user to select a portion of the DSH-III

virtual address space for special high-reliability

handling, such as automatic replicbtion and

S ,duplication of data. This facility might be used

to protect data of an especially critical nature,

* -3-

. - , " . , . . , . " , . . . ,

such as system control tables. The Tandem [Bart77]

computer is an example of a system which uses

automatic duplication to enhance availability;

BLOCK-MOVE - allows a user to transfer large data blocks from one

location in virtual memory to another. By simply

modifying the mapping of real to virtual memory,

this operation could be accomplished without any

actual data movement;

BLOCKZERO - allows a user to initialize (set to zeroes) a large

area of virtual memory.

2.2 Basis of DSH-III Design

The fundamental rationale for the design of DSH-III to be presented in

this paper is based on three principles: 1) employing a range of storage

technologies, 2) taking advantage of locality of reference, and 3)

hierarchical decomposition and distributed control.

2.2.1 Range of Storage Technologies

A basic problem which constrains the design of any high-speed,

high-capacity storage system is that no single storage technology can meet

the requirements for both speed and capacity within reasonable cost

constraints. For example, high-speed semi-conductor RAM can support random

* access times of 5Ons, or less, but costs on the order of 5 cents per byte.

At the other end of the cost/capacity/speed spectrum are mass storage

devices such as automated tape handlers, which can store large quantities of

* data at a cost of only .0005 cents per byte, but which have access times up

to seven orders of magnitude slower than high-speed RAM. In between these

* -4-

two extremes are a range of storage device technologies as shown in

Table 2.1.

Sequential
Random Transfer Unit Unit

Storage Access Rate Capacity Price
Level Example Time (bytes/sec) (bytes) (cents/byte)

LI 1. Cache HMOS RAM 40-50 ns 80M 32K 5~(4 bytes/access)

2. Main NMOS RAM 500 ns 8M 1M 0.1
(4 bytes/access)

3. Backing High-Speed 2 ms 2M lOM 0.5
Drums

0 4. Secondary Disks 25 ms 121 1-1.5B 0.005

5. Mass Automated Tape 1 sec I 100B 0.0005
Handlers

Table 2.1 - Summary of Storage Technologies

The approach taken in the design of the INFOPLEX Data Storage Hierarchy

is to utilize a range of storage technologies, with the bulk of the data

stored on inexpensive Sut relatively slow devices and automatically migrated

to higher speed devices when it is accessed. This approach is logically

equivalent to that used by cache based computer systems such as the IBM 3033

[IBM3033] and by mass storage systems such as the IBM 3850 [IBM38501.

2.2.2 Locality of Reference

In order for a multimedia storage system to take full advantage of its

higher speed storage devices, it is desirable that the higher speed devices

be accessed relatively more often than the lower speed devices. For this

goal to be attainable, it is necessary that the database be subject to a

05-

non-homogeneous reference pattern. This non-homogeaieity can be spatial or

temporal and any database system which has this property is said to exhibit

locality of reference [Madn73J. Spatial locality refers to access patterns

for which reference to any particular data item increases the probability

that related data items will also be accessed. There are many examples of

this phenomenon:

- sequential flow of control in a software module implies that
reference to an instruction in program storage presages
references to following instructions.

- reference to a particular field in a record stored in a file
system is usually accompanied by references to other fields in
the same record (or the same field in related records).

* Temporal locality refers to access patterns for which consecutive

references to data items are correlated in time. Automatic teller systems

provide a typical example of this phenomenon. A common usage consists of a

balance inquiry followed by a cash withdrawal, resulting in two accesses to

the account balance within a short period of time. (In fact, the withdrawal

alone, or any other database update, exhibits temporal locality due to the

need to read the data item to be updated before writing the modified version

of the data.)

INFOPLEX takes advantage of the fact that database systems do exhibit

* locality (Rodr76, Robi79l, and that locality can be used to increase the

relative utilization of the higher speed storage devices in the system.

There are three strategies for taking advantage of locality:'

* - static, where high-usage data, such as key system tables, is
permanently allocated to higher speed devices

-manual, where it is the responsibility of the programmer to move
data to higher speed devices when it is needed

* - and automatic, where the system automatically migrates high
usage data to fast devices and low usage data to slow devices.

One design strategy of INFOPLEX is to use automatic migration to take

* -6-

advantage of locality. This technique has the following advantages:

- it allows dynamic response to changing application loads and
time-varying database content

- it relieves the programmer or system designer of the burden of
allocating the data.

This strategy is analogous to that used by the Multics operating system

which automatically migrates pages of virtual memory between high speed

paging devices (e.g., drums) and lower speed devices (e.g., disks) in

response to changes in the working sets of the active tasks in the system

[Gree75]. The precise manner in which automatic migration is implemented in

DSH-III is described in Section 3.

2.2.3 Hierarchical Decomposition and Distributed Control

INFOPLEX organizes its heterogeneous array of storage devices using the

principle of hierarchical decomposition and distributed control. The use of

hierarchical decomposition leads to a conceptual system design'such as that

shown in Figure 2.1. This structure has been shown (MadlO79] to represent an

efficient and effective method for integrating heterogeneous storage devices

into a single system. There are three primary advantages to this structure.

First, the hierarchical structure supports the types of direct

• interlevel data transfer which are used by read, write, and automatic

migration algorithms. This avoids the overhead associated with the indirect

data path (i.e., drum to main memory to disk) used by the page migration

4 scheme of Multics mentioned above.

Support for direct inter-level data transfer is a reflection of the

second advantage of the hierarchical structure, namely that it facilitates

• the utilization of a distributed control strategy for the system. By this

we mean that the basic system control and interlevel communication functions

* -7-

Request

IGenerator_

Levell 1_ _ _ _ _

("cache") II______

,J. ~~~Level 2 I______

Level r
("reservoir")I

Figure 2.1 -Logical Structure of a Storage Hierarchy

will be performed by micro-processor clusters within each level. This

9strategy improves system performance by facilitating parallel and

asynchronous operation within the hierarchy, as well as eliminating the

potential reliability exposure that would be associated with a single

controlling processor cluster.

Third, the design is inherently modular. This has four principal

advantages

-the structure allows the use of common algorithms and software
*modules at each of the levels. This facilitates software

design, especially in the area of interlevel communications
protocols.

ifa level fails, the remaining levels form a system which is
logically equivalent to the original (unfailed) system. This
has important implications for the ability of the system to
continue operation in the presence of failures.

-the modular structure facilitates the incorporation of new
storage technologies into an INFOPLEX system. Thus the basic
design should be relatively insensitive to the rapidly changing
technology in this area.

-the structure allows the building of storage hierarchies with
the number of levels and the types of storage device at each
level customized to a particular application.

3 DESIGN OF AN INFOPLEX STORAGE HIERARCHY

This section presents the cost/performance/complexity/reliability

tradeoffs and other issues underlying the design of DSH-III. We begin, in

Section 3.1, with a general overview of the system topology implied by the

discussion in Section 2.2. Next, Section 3.2 describes the interface

between DSH-III and a user. Section 3.3 presents a justification for the

data management strategies used in DSH-III. Based on these strategies, a

specification for the READ algorithms used by DSH-III is developed in

Section 3.4. The basic design of DSH-III is completed by the specification

-. Cof WRITE algorithms for DSH-III in Section 3.5.

3.1 Overview of System Topology

Following the reasoning presented in the preceding sections leads to a

conceptual system design such as the one shown in Figure 3.1. The system

consists of r storage levels, Level 1 to Level r, with Level 1 containing

high-speed cache memory and Level r (the "reservoir") containing mass

storage devices which contain a copy of all the data in the database. One

of the modules shown in Levels 2 to r is a Local Storage System (LSS), which
.*-

consists of the physical devices holding the DSH-III database. LSS

technology will vary from level to level, with higher levels using faster,

but lower capacity, devices. In particular, because of the high response

time requirements for the highest level, Level 1 will use the same storage

technology for both Local Memory (LM) and LSS. For this reason, no separate

LSS is shown for Level 1 in Figure 3.1.

All interlevel communication is performed via the Global Bus (GBUS).

Y'V The major disadvantage of using a single GBUS instead of an inter-level busS

between each adjacent pair of levels is that the parallelism of the system

-10-
V

User Bus (UBUS)

I __ _ I Gateway I
I Controllerl
I (GC) I* I

I Local Bus (LBUS)

I Gateway I I Processing I Local I
I Controller{ I Elements I Memory I Level 1
I (GC) I I (PE's) I (LM) I

I I I I
I I I

I Gateway I I Processing I Local I Local
1_ Controllerl I Elements I Memory I I Storage I Level 2

SI (GC) I (PE's) I (LM) I I System (LSS) I

Global Bus
(GBUS)

II I I I
I I -1- --

I Gateway I I Processing Local I I Local
1_1 Controllerl j Elements I Memory I I Storage I Level r

I (GC) I J (PE's) I (LM) I I System (LSS) I

Figure 3.1 - Conceptual Structure of a Storage Hierarchy

is reduced and thus bus contention and resultant queuing delays are

V increased. That this is an important consideration is shown by simulation

* studies of a storage hierarchy [Lam79a] which showed GBUS utilizations of

over 80%. While 80% utilization of the GBUS has little impact on system

performance (because the GBUS has a high bandwidth relative to other

components of the system) it is clear that the GBUS could easily become a

bottleneck under slightly different assumptions for component speeds or

S- 11 -

transaction loads. On the other hand, the logical GBUS could be implemented

as multiple physical buses. In this case, adding extra capacity to a

bottlenecked GBUS would not involve. any great difficulty, but could be

accomplished by replicating existing hardware structures. The potential

disadvantage of using a single logical GBUS is clearly outweighed by the

advantages offered by this structure. These advantages include

- the ability for a level to communicate with any other level,
thus supporting "broadcasting" of information. As will be seen
in Section 3.3, broadcasting greatly improves the efficiency of
data movement algorithms and eases system control problems by
providing a means of synchronizing operations at different
levels.

- increased availability, since the system structure facilitates
* "1graceful degradation" and continued operation in the presence

of level failures.

- more cost effective utilization of resources since the resource
(the GBUS) is shared by all users (the levels) in the system.
This facilitates the matching of bus capacity and demand.

Each storage level consists of a number of storage devices and

processing modules, interconnected via a Local Bus (LBUS). The interface

between each level and the GEUS is provided by a Gateway Controller (GC) at

each level. From the viewpoint of a GC, each level appears as an identical

black box, i.e., the number and types of processors and storage devices

within each level are transparent to the GC at that level. This conforms

with the concept of modularity and commonality of algorithms and software

discussed in Section 2.2.3.

A Pended Bus Protocol [Toon8O] will be used for all buses in order to

support the large number of devices on each bus.

A forthcoming report will present a more complete discussion of a

possible hardware implementation of this hierarchical structure.
%

-12 -

3.2 User Interface

Level 1 (the "cache" level) of the storage hierarchy serves as the

interface between the user (the lowest level of the INFOPLEX Functional

Hierarchy) and DSH-III. In particular this implies that Level 1 represents

a shared cache structure, rather than a per user processor cache structure.

Detailed simulation studies show that this single-bus, shared cache

structure is a very effective and efficient topology for providing

high-speed, parallel, multi-processor access to the storage hierarchy. This

structure, which is made feasible by the use of the Pended Bus protocol, has

the significant advantage of greatly simplifying the cache consistency

control problem. For a complete discussion of possible alternate topologies

and the tradeoffs among performance and consistency control policies the

reader is referred to [Abde8l].

In addition to the usual GC at Level 1, there is another Gateway

Controller which serves as an interface between the Level 1 LBUS and a User

* Bus (UBUS) which connects DSH-III and the Functional Hierarchy.

From the point of view of a user, DSH-III appears as a very large

linear address space which is accessed via simple primitives such as

READ(request id,virtual address) and

* WRITE(requestid,virtualaddressdata).

As noted previously, the interface has been kept as simple as possible, and

a user is completely isolated from the details of data management and error

recovery. The intelligence to perform these functions is distributed

throughout DSH-III.

The READ and WRITE operations are not atomic operations. This means

that control is returned to a user after he issues one of these commands,

but before the operation has completed. When the operation finally

-13-

ALA

completes, the user is notified. This implies that a user may have multiple

operations active simultaneously. Because of this, it is important to

specify now DSH-III will behave if READs and WRITEs are overlapped. For

sequences such as

READ, WRITE, READ complete, WRITE complete, or

WRITE, READ, WRITE complete, READ complete

DSH-III will arbitrarily treat the entire READ operation as having either

preceded the WRITE or followed the WRITE completion. Therefore, the results

of the READ may or may not reflect the results of the WRITE. The only

guaranteed way to ensure that a READ will reflect the results of a WRITE is

* to issue the READ after the WRITE has completed.

* The remainder of this chapter is devoted to explaining and justifying

the data movement strategies used by DSH-III. The details of the algorithms

used by DSH-III to support the READ and WRITE primitives, will be presented

in a future report.

3.3 Data Movement Strategies

The objectives of the data movement strategies used by DSH-III are

three-fold. First, the strategies attempt to take advantage of locality by

* migrating high usage data to the higher speed storage devices. Second, the

strategies attempt to minimize unnecessary data movement within the system

in order to reduce bus contention. Third, redundant copies of data blocks

* are maintained at various levels. This has the effect of increasing system

reliability while greatly simplifying page migration algorithms.

The basic design decisions underlying the data movement strategies of

DSH-III are

*14
* -14-

- when should a block of data be moved from a lower level to a
higher level of the hierarchy?

- if the transfer of a data block to a higher level necessitates
the removal of a block already in the higher level, how should
the block to be removed be selected, and what should be done
with it (e.g., should it be discarded or transferred to some

= other level)?

- how big should the basic unit of access and transfer (the "page
size") be; should it be the same at all levels or differ from
level to level?

3.3.1 Demand Paging with Replacement

The data retrieval algorithms of DSH-III are based on a demand fetch

policy. Under this policy, a data block is moved from a lower to a higher

level in the hierarchy only in response to an explicit READ request by a

user. In other words, there is no attempt made to anticipate future

retrieval requests (based on known usage patterns or locality

* considerations) by pro-fetching data blocks before they are explicitly

requested. This does not mean that the system does not take advantage of

*spatial locality. As will be seen, DSH-III blocks data into pages of

various sizes, and this policy does result in anticipatory retrieval of data

stored in the same page as the data being explicitly retrieved. The point

here is that no anticipatory fetches are made, even though anticipatory

retrieval may occur as a side effect of fetches that are performed in

response to explicit retrieval requests by a user. Note that a user can

create the effect of anticipatory fetching by simply issuing anticipatory

reads for those applications (e.g., monthly payroll) whose future data

requests are predictable.

The transfer of data into a level may necessitate the removal of some

data already at that level in order to make room for the incoming data.

This removal process is referred to as replacement and the replaced data is

S -15-

said to have overflowed.

The justification of a demand fetch policy is based on the fact that,

for hierarchical storage systems, ". . . given any [series of requests] and

replacement algorithm (not necessarily using demand paging) [a] replacement

algorithm exists that uses demand paging and causes the same or a fewer

number of pages to be loaded . . ." [Matt7Q]. Intuitively, this means that

demand paging leads to no more I/0 requests within the hierarchy than any

other possible algorithm. Since the number of I/0 requests is a fundamental

-V., limiting factor for system throughput, using a policy which minimizes I/0

requests is very attractive.

* This policy leads to a retrieval scheme which operates roughly as

fnllows:

1) a user issues a READ request

2) if the requested data is found in the cache level it is returned
to the requesting user

3) if not found, the hierarchy is searched for the requested data.
The requested data is transferred from the level in which it is
found to the cache level, and from there to the requesting user.

This very general description leaves open a number of questions which will

be addressed in the remainder of this chapter, including:

1) is only the requested data fetched or are entire blocks which
* may contain data which has not been explicitly requested

retrieved?

2) if the data is blocked into pages, should the pages be the same
size at all levels?

*3) given that an entire page has been referenced, should a copy (or
multiple copies) of the page be saved in the levels between the
level at which the page was found and the cache level, in
anticipation of future requests for data in that page?

4) how is the hierarchy searched -level by level or all levels in
parallel?

, -lk16-

5) finally, if this strategy results in an overflow, how should the

page to be removed be selected, and what should be done with it?

Questions 1, 2, and 3 will be addressed in the next section, while questions

4 and 5 will be dealt with in Section 3.4.

3.3.2 Page Size Specification and Page Splitting

An examination of the random access times and transfer rates of the

devices listed in Table 2.1 reveals that access times vary by over six

orders of magnitude, while transfer rates vary by only two orders of

magnitude. This fact, coupled with spatial locality considerations, can be

used to show that system performance can be optimized (with respect to total

expected data transfer delay) by

1) a choice of page sizes such that N1 < N2 < ... < N' (where N1

* is the size of the unit of transfer from Level i+1 to Level i,
and also the size of the page stored at Level 0) coupled with

2) the use of a page splitting algorithm to determine the placement

of data in the various levels in the hierarchy.

(For a detailed derivation of this result, see [Madn73J.) Intuitively, a

factor to consider in the choice of N1 is that this choice represents a

.4- tradeoff between the sensitivity of the system to spatial and temporal

4.locality, respectively. A smaller page size decreases the sensitivity to

* spatial locality (less spatially related data is retrieved by each fetch),

.p 4 . but increases sensitivity to temporal locality by allowing a level to hold a

larger and more diversified collection of pages. Of course, the optimal

values of N1 will depend on the actual degree of locality and the speeds of[the various storage devices in the hierarchy.

k.' In order to retain as much flexibility as possible in the design of

* DSH-III, we allow the size of the unit of transfer between Level 1 and theF user to differ from the page size, N', at Level 1. This idea is consistent

ii -17-

-,~~~ '$. .-

with the variation of page sizes within the storage hierarchy itself. The

size of the data blocks transferred, via the UBUS, between DSH-III and a

* user will be denoted NO.

Page splitting operates as follows. Suppose a referenced data item is

found in some page, of size N3, at Level 3. The sub-page (of size N 2)

containing the referenced data item is retrieved and transferred to Level 2

via the GBUS. Logically, the next step would be for Level 2 to transfer the

sub-page of size N1 containing the referenced data item to Level 1. In

practice, this is not necessary, since Level 1 can obtain the appropriate

sub-page from the GBUS during the initial transfer of data from Level 3 to

* Level 2. Therefore, the strategy actually used by DSH-III is for the level

at which the data is found to ''broadcast' the appropriate page over the

GBUS, with each level extracting the appropriate sub-page from the broadcast

data. This strategy is called READ-THROUGH since the requested data is read

through from the level at which it is found directly to the highest storage

level. This procedure is illustrated in Figure 3.2.

This figure gives an example of the notation we will use when it is

desired to make explicit the relationships between a set of pages and their

* sub-pages at various levels. Virtual addresses of the smallest addressable

units of data, i.e., pages of size No bytes, will be denoted by sequences of

letters and/or numbers. Thus, X, 12345, and AB3 might denote addresses.

The addresses of pages at Level i are denoted by a sequence of letters

* and/or numbers followed by i asterisks. Thus A** denotes the address of a

-04 page in Level 2. Page/sub-page relationships are expressed by using

identifiers with all non-asterisk symbols equal. Thus A** contains (is the

"parent" of) AB* (its "child"). Page AB*, in turn, is the parent of AB3.

In situations where the relationships between pages are clear from the

1X23*I
j Level 1

I
I j IX23*I I

N N bytes

- I I I I~
I IX21*lx22*lX23*1X24*l I
II I I I I Level 2

1 I I I I IX21*1X22*1X23*lX24*I I IS I I I. I I I I I
N2-byte page, X2**

Sx2** I
_ _ _ I I Level 3

T I i I i I i
I"I I I I Xl** X2** I I I

N3-byte page X***

I I N3-byte page X***

Key: I Xl** I X2** I containing 2 N2-byte
. I I sub-pages, Xl** and X2**

I I I I I N2-byte page X2** containing
1X21*1X22*1X23*1X24*I 4 N'-byte sub-pages,
I I I I X21*, X22*, X23*, and X24*

Note: Pages not drawn to scale, i.e., N3 > N2 > N'

Figure 3.2 - Illustration of Page Splitting as Page X23*
is Broadcast From Level 3 to Levels 1 and 2

context, we will adopt the simpler notation of denoting pages by upper case

Latin letters, e.g., X, Y.

*. - 19-

t' 4. t. .-- . *

In order to simplify implementation of the READ-THROUGH strategy, it is

desirable that the page sizes be powers of 2. From now on we will assume

- ~ that N' can be written as 2 k(1), where k(i) is an integer. This means that

each page in Level i contains an integral number of sub-pages of size NI-1.

The total capacity of Level i, denoted C', can be computed as C' m11

where ml is the number of pages of size N1 in Level i.

3.3.3 Page Splitting and Redundant Data

One result of using a page splitting strategy is that the system will

contain redundant copies of data blocks. As a data item is read through

* into Level 1I it leaves a copy of itself, embedded in an appropriately sized

page, in each level of the hierarchy.

There are two disadvantages associated with this redundancy. First,

from a myopic point of view, redundancy is wasteful of storage space, but

this ignores the performance gains resulting from a page splitting policy.

One alternative to page splitting would be to transfer the requested data, X

say, to Level 1 only (in a page of size N1). Then, as subsequent references

caused other pages to be brouE'ht into Level 1, X would eventually overflow

and would be moved down to Level 2 to make room for the incoming data. This

* type of overflow handling policy will be justified in the discussion of

overflows in Section 3.4.3. Moving X from Level 1 to Level 2 would result

in two I/O's and a bus transfer. In addition, since the pages in Level 1

* are N1 bytes and the pages in Level 2 are N2 > N1 bytes, the rest of the

page of size N2 containing X will have to be retrieved and moved into

Level 2 in order to maintain the consistency of the paging scheme at

* Level 2. This latter retrieval will result in two more I/O's and another

bus transfer. This process would then have to be repeated as the page

S -20-

removed from Level 2 to make room for X is moved to Level 3, and so on, all

the way down the hierarchy. It is clear that this scheme involves

considerable overhead, both in terms of extra I/O's and added bus traffic.

It will be shown that the redundancy caused by page splitting allows the use

of READ and WRITE algorithms which eliminate this overhead by discarding

removed pages while still obtaining the performance benefits due to

considerations of temporal locality.

The second disadvantage arises out of the potential for inconsistencies

present in any system with redundant data. It will be shown that the

algorithms used by DSH-III eliminate this possibility.

* There are also some positive aspects to the data redundancy in DSH-III.

Besides the performance advantages alluded to above, redundancy enhances the

ability of DSH-III to recover from failures and continue operation by

reconfiguring itself to bypass a failed component.

Finally, note that maintaining redundancy does not have much impact on

the total effective storage capacity of the hierarchy since, in any

reasonable design, one would expect C' << C'+' .

The advantages of using a page splitting policy appear to outweigh the

disadvantages. Therefore, this policy has been incorporated into the data

movement algorithms of DSH-III.

* 3.4 READ Strategies

* Up to this point we have discussed data movement strategies and the

tradeoffs among various alternative policies at a fairly general level.

After settling on a hierarchical structure and specifying possible data

movement paths between levels of the system, various data management

policies and tradeoffs were discussed. The strategies selected on the basis

*. - 21-

7-'1'-

of this discussion included demand fetch with replacement, different page

sizes at various levels (selected on the basis of storage device speeds and

locality considerations), page splitting, and the storage of redundant data.

'4 The following sections further refine the specification of the READ

algorithms used by DSH-III. Issues addressed include specification of how

the READ-THROUGH policy operates, how pages are selected for replacement,

and how overflows are handled.

3.4.1 Data Location and READ-THROUGH

If a referenced data item, X say, can not be located in Level 1 (the

0 cache level), the rest of the hierarchy must be searched for X. There are

two ways that this search might be implemented, serial or parallel. A

serial search could operate as follows. The READ request is passed, via the

GBUS, from Level I to Level 2. A directory in Level 2 is searched for a

page containing X. If found, X is retrieved from the storage system in

Level 2, and the READ-THROUGH process is initiated to transfer X to Level 1

and the Functional Hierarchy. If X is not found in Level 2, the READ

request is passed down to Level 3, and the search is repeated at that level,

and so on, until the request has percolated down to a level which contains

x.

A parallel search operates as follows. The READ request is broadcast

from Level 1 to all lower levels of the hierarchy, which then perform

*simultaneous, parallel directory searches for X. The highest level to

locate X then initiates the READ-THROUGH for X, after informing all the

other levels that X has been located.

-22-

-. x

The parallel search scheme has an obvious advantage in that it has

potential for minimizing the expected delay between initiating the search

and locating the data. On the other hand, there are some potential

drawbacks to the parallel search strategy. While it is true that the

expected time for a parallel search is less than that for a serial search,

the parallel search is wasteful of system resources in that only the results

* of one search will be used. All the other searches represent wasted effort.

This would not be a concern if it was expected that there would be excess

* processing power at each level. However, the fundamental rationale for the

,1 multi-processor architecture of DSH-lII is that throughput can be increased

by processing multiple transactions in parallel. Thus the parallel search

might use resources that would otherwise be employed doing "useful" work as

a part of the inherent parallelism of DSH-III. There is an implicit

assumption here that the search uses scarce system resources. If, for

example, the search was performed by specialized (and underutilized)

* hardware, there would be no disadvantage to parallel searches. Intuitively,

the parallel search strategy represents an attempt to decrease response time

* for individual transactions at the potential expense of decreasing overall

system throughput. But note that the time for a serial search grows

linearly with the number of levels that must be searched, while the data

retrieval times grow by orders of magnitude as one moves down the hierarchy.

This implies that the parallel search strategy is relatively less

advantageous for retrieving data from lower levels of the hierarchy because

* the total search time for either strategy is relatively insignificant

* compared to the data retrieval time at lower levels. Therefore, for those

retrievals where the parallel strategy has the greatest absolute advantage,

the relative impact on response time is small. In addition, locality

-23-

V ~ ~ *S- . ~ *'' *' ** * * *

~ - _ ,1 .~44.C.(A ~ .All*

V considerations lead one to expect that the majority of retrievals will be

satisfied at high levels of the hierarchy. For retrievals from these

levels, the serial search time is not much greater than the parallel search

time, and thus does not have a great impact on response time.

Another drawback of the parallel search strategy is the extra algorithm

complexity and control protocol overhead needed to coordinate the searches

at different levels in order to determine the highest level at which the

data was found.

The tradeoffs between serial and parallel searching will be the subject

of further investigation, since the relative merits of the two schemes are

* dependent on the exact hardware configuration and load on the various

components of the system. For the purposes of this paper, we will use the

serial search strategy because it is simpler and because the parallel

strategy does not seem to offer any significant performance benefits.

The precise mechanics of the READ-THROU"H process are fairly

straightforward. Once the requested page has been located, it is retrieved

from the LSS and broadcast to all higher levels of the hierarchy.

One potential way to decrease system response time would be to order

broadcasts so that data destined for higher levels was broadcast first. In

A particular, the page destined for the cache level (and the Functional

Hierarchy) could be broadcast first. In other words, the first data

broadcast would be the sub-page of size N' containing the referenced virtual

address. Next, the sub-page of size N2 containing the referenced data would

be broadcast, and so on until the entire data block had been broadcast.

This refinement of the basic READ-THROUGH strategy is not considered further

in this paper, but will be a subject for further investigation.

-24-

a'

3.4.2 LRU Replacement

The next issues to be addressed deal with the choice of a replacement

policy and the design of overflow handling algorithms.

DSH-III will use a Least Recently Used (LRU) replacement policy. At

any point in time, the pages at a level can be ordered by time of most

.3 recent reference. This ordering is called the LRU stack for the level, and

each page at the level occupies a unique position in the stack (which will

change as references are made to the level). Under the LRU policy, the page

at the bottom of the stack (i.e., the page least recently referenced) is the

one selected for removal. There are three reasons for the selection of LRU

* as the replacement algorithm for DSH-III:

- 1) LRU has been shown empirically to compare favorably with the
"optimal" removal algorithm, MIN [Bela66]. (MIN itself can not
be used as a replacement algorithm since it requires knowledge
of the future.)

2) LRU is one example of a class of "stack algorithms" [Matt70].
-. These algorithms can be shown to have "inclusion" properties

which are used to simplify the data movement algorithms of
DSH-III.

3) One consequence of the inclusion property of LRU is that the
"hit ratio" for a level (the fraction of READ requests
satisfiable at that level) is a monotonic function of level

size. Thus LRU is not subject to certain anomalies [Bela69]
.- which can decrease performance as level size increases.

Now suppose that a reference to some data item, X, is satisfied at some

level, j (the highest level containing X). This will cause X to be moved to

the top of the LRU stack at Level j. Then the READ-THROUGH for X will

* result in a copy of X being stored in all levels, i, with i < j, and all

these levels will have their LRU stacks changed to reflect the fact that the

most recent reference at each of these levels was a reference to X. The

* algorithm described up to this point is referred to as LOCAL-LRU [Lam79a].

It is characterized by LRU stack updates being performed only at those

* - 25-

levels which actively participate in a READ-THROUGH, in this case Level 1 to

Level j.

An alternative policy is termed GLOBAL-LRU. Under this policy, the LRU

stacks in Level 1 to Level j would be updated as for LOCAL-LRU. In

addition, the LRU stacks in all levels below Level j which contained X would

also be updated just as if a reference to X had been made at each of those

levels.

Figures 3.3 and 3.4 illustrate these two alternative LRU policies.

Reference to X

I I 1

Level

~Level

I I2

READ-THROUGH

Level highest level
I I _ _ _containing X

0

Level

these levels are
- not affected by

the READ-THROUGH .

Level

Figure 3.3 -Illustration of LOCAL-LRU Algorithm

. - 26-

'; i ,b, ,: -',?.",# ,i ,¢(-. .- ,.4 .4.,' . . *..'- '.N: :':,v '-'-'-K ', -v .-.-. .: .- .; , .

Reference to X

Leve

Level

I I 2

1, READ-THROUGHI

2<ILevel Ihighest level
I I______________________ Icontaining X

Level

these levels are
updated as if a
reference to X
had been made to
each of them

Level
4)..'r

Figure 3.4 -Illustration of GLOBAL-LRU Algorithm

The justification for the choice of LRU policy used by DSH-III will be

0 deferred until the issue of overflow handling has been discussed.

3.4.3 Overflow Handling

* When an overflow occurs there are three possible courses of action:

option 1: The overflow page could be simply discarded. (Since a copy

of every page exists in the reservoir, this policy does not

lead to the loss of any data.)

-27-

Zil

option 2: The overflow page could be moved to the next lower level of

the hierarchy.

option 3: The overflow page could be moved to some other location(s) in

the hierarchy.

Before presenting the pros and cons of these alternatives, let us

recall the original rationale for adopting a hierarchical system design.

The idea was to create a structure which would take advantage of locality by

providing a range of storage devices and allowing the dynamic allocation of

data to faster or slower devices based on anticipated future usage patterns.

Therefore, we adopt as a "preferred" overflow policy one which attempts to

* keep more recently referenced data in higher (and faster) storage levels.

The obvious way to accomplish this is to maintain an LRU stack for the

entire data base, and to allocate pages to higher or lower levels according

to their position in this global LRU stack. Clearly, this is infeasible,

since a global LRU stack runs contrary to the principle of distributed

control and hierarchical decomposition. Instead, we can approximate the

ideal strategy by maintaining separate LRU stacks within each level, and

moving pages down the hierarchy one level at a time each time they overflow.

-. This implies that option 2 should dominate option 3, so option 3 is

* discarded as a potential overflow handling strategy. Thus the choice of

overflow policy is reduced to selecting either option 1 or option 2 on the

basis of degree of conformance with the "preferred" policy (subject, of

course, to performance considerations).

*1 In order to define option 2 completely, we must specify what effect an

--J overflow from Level i has on the LRU stack at Level i+l. Lam [Lam79b]

*proposes two algorithms for handling this situation: Static Overflow

Placement (SOP) and Dynamic Overflow Placement (DOP). Under an SOP policy,

* -28-

the overflow of a page, X, from Level i has no effect on Level i+l unless

there is no copy of X at Level i+1, in which case the overflow is treated as

if a reference to X had been made at Level i+l. Under DOP, an overflow of a

page, X, from Level i results in the LRU stack at Level i+1 being updated as

if a reference to X had been made at Level i+l.

Two things should be noted regarding these policies. First, under

either SOP or DOP, if X is not in Level i+l, the reference generated by the

overflow results in a READ-THROUGH of X to Level i+1. Therefore, in this

case SOP and DOP have identical effects but involve significant overhead.

Second, if X is found in Level i+1, SOP implies that no action need be taken

beyond verifying that X is indeed in Level i+l. Notice that in this case

(option 2 with SOP and X found in Level i+1), option 1 and option 2 are

equivalent, except for the verification that X is in Level i+l.

Tables 3.1a and 3.1b summarize the pros and cons of the three overflow

handling options in the light of the foregoing discussion. Table 3.1a

assumes that there is no redundant data in the system, while Table 3.1b

assumes that the parent page of any overflow page will always be in the next

lower level. We term this property Overflow Inclusion. This distinction is

important because, as can be seen from Tables 3.1a and 3.1b, Overflow

Inclusion eliminates the need to perform any actual data transfers in order

to support any of the three overflow handling options. With Overflow

-i Inclusion, the only difference between the three options is the need, under

0 option 2 with DOP, to update the LRU stack at Level i+l in the event of an

overflow from Level i. Notice that the assumption of Overflow Inclusion

eliminates the need, under SOP, to determine whether or not an overflow page

has a copy in the next lower level.

*29

Option 1 Option 2 (SOP) Option 2 (DOP)

Conformance with low high high
Preferred Policy

Bus Load low high high

Complexity low moderate moderate

Table 3.1a - Overflow Policy Tradeoffs (No Redundancy)

Option 1 and Option 2 (SOP) Option 2 (DOP)

Conformance with high high

Preferred Policy

Bus Load none low

Complexity low moderate

Table 3.1b - Overflow Policy Tradeoffs (Overflow Inclusion)

Tables 3.1a and 3.1b show that the "best" overflow handling scheme can

be achieved in a system with Overflow Inclusion. Without Overflow

Inclusion, the choice is between a policy (option 1) which is simple and

involves little overhead but does not have the desirable features of the

"preferred" policy and a policy (option 2) which conforms to the "preferred"

*e policy but imposes heavy overhead on the system. The next section shows how

Overflow Inclusion can be achieved at little cost in terms of overhead or
-.:

- complexity by simply placing loose bounds on ml .

*@ The original rationale for DOP (as opposed to SOP) was that DOP

conformed more closely with the "preferred" overflow concept, in that an

Z14. overflow from Level i would move from the last slot in the LRU stack at

Level i to the first slot of the LRU stack at Level i+1. This agrees with

the view of the stack at Level i+l being a logical extension of the stack at

0 -30-
•-0.4

.9.

Level i. A closer examination reveals that this advantage of DOP over SOP

is largely illusory, if GLOBAL-LRU is used. Assuming that there is

redundancy in the system, the effect of DOP is to move X, the overflow from

Level i, ahead (in terms of LRU stack position in Level i+l) of all the

pages in Level i+l which contain sub-pages in Level i. Thus the page, X,

which is no longer in Level i, is, in some sense, being treated as if it

were more recently referenced than pages which are still in Level i. Of

course, when these latter pages eventually overflow from Level i, the DOP

algorithm will restore them to their "rightful" place ahead of X in the LRU

stack in Level i+l. However, Theorem 4 in the following section will show

that SOP, in conjunction with GLOBAL-LRU, has approximately the same end

result, with none of the complexity or overhead of DOP. Since we will be

using an algorithm based on GLOBAL-LRU, SOP appears preferable to DOP as an

overflow policy.

3.4.4 Multi-Level Inclusion (MLI) and Overflow Inclusion (MLOI)

If, at any instant of time, any page X in Level i is a subpage of some

page in Level i+l, the storage hierarchy is said to have the Multi-Level

Inclusion (MLI) property [Lam79a]. At first glance, it might seem that MLI

* is sufficient to guarantee the Overflow Inclusion mentioned in the preceding

section, but this turns out to be false. Consider the three level hierarchy

shown in Figure 3.5a. In this hierarchy, the same data, X, is in the next

page to be selected for eviction from both Level 1 and Level 2. Figure 3.5b

shows the effect of a READ-THROUGH from the reservoir in this situation. As

a result of the READ-THROUGH, Level 1 and Level 2 are updated

simultaneously, resulting in a simultaneous overflow of X from each level.

d Thus at the instant that X overflows from Level 1, there is no copy of X in

-31

*4 -31-

I A I B I •• W I X II I I I I I

Level 1

I1 I I I i I I

Z A W • • I A [- . I w l X I

.I _____ J _____ _______ I ______
- . . Level 2

. "I I I I I I I I I I

Level 3

Figure 3.5a - Hierarchy Just Before READ-THROUGH for Z

Level 2, even though the MLI property holds for this hierarchy. In this

case, discarding the overflow page would leave no copy of X in Level 2, an

undesirable outcome from the point of view of taking full advantage of

temporal locality. An inclusion property slightly stronger than HLI is

needed to prevent this situation from occurring. This property is

Multi-Level Overflow Inclusion (MLOI). MLOI holds if any overflow page from

Level i is a subpage of some page in Level i+l and MLI holds as well. Thus,

MLOI is sufficient to allow overflows to be discarded under any reasonable

overflow handling policy. The following sections describe the conditions

under which the MLI and MLOI properties can be guaranteed to hold, and

briefly discuss the implications of these properties for performance and

reliability of DSH-III.

-32-

-4 9 32 -

READ-THROUGH

for Z X overflows
- -simultaneously

I from Level 1
and Level 2

I I I I II
Z A IB I .. IW I _1

I __ _ _ _i I___ _II I I
Level 1 I X

I I__ _ _I __ _ I ___I I[1 __ _ I II . . .Z A II W I _

Level 2 I X

I I I IIII_ __III

• I Z I A B.I S I . w I X I . I*1 I I I I I I
I ___I___ ___ _ _ .. I I ____

Level 3

Figure 3.5b - Hierarchy Just After READ-THROUGH for Z

3.4.4.1 Theoretical Basis for MLI and MLOI

In order to define precisely the conditions under which MLI and MLOI

hold it is necessary to completely specify the data movement algorithms used

by DSH-III. The assumptions that have been made so far regarding what would

constitute a "good" algorithm are:

- the use of READ-THROUGH with page splitting

- the use of an LRU replacement policy at each level

- the "preferred" overflow handling policy involves logically
moving an cverflow page to the next lower level. Recall that if
,LOI holds, this policy imposes no overhead on the system, since

. ~. no actual data movement is needed.

-33-

S ." """-"""""""" 4 . ,"'. """""""". . . - . """""-""""' . ,"-"""""'"""'. ,"""""% " """"" ,'""""

- , -J- .v---v.- .- ,. . . :- -:--- N' N' - - N -.7 -- . ' ~ - ., . . •

Given these basic assumptions, there are four possible READ strategies

that can be derived by selecting either LOCAL- or GLOBAL-LRU in combination

with either Static Overflow Placement (SOP) or Dynamic Overflow Placement

(DOP). Table 3.2 shows the four possible strategies.

Overflow Handling Policy

Static Overflow I Dynamic Overflow
Placement (SOP) Placement (DOP)

------ ---------------- ------------------
LOCAL-LRU LOCAL-LRU-SOP LOCAL-LRU-DOP

LRU Policy I --------- ------------- ------------
[GLOBAL-LRU GLOBAL-LRU-SOP GLOBAL-LRU-DOP

-0

Table 3.2 - The Four Possible READ Algorithms

We now present a series of theorems which characterize the inclusion
.

properties of hierarchical storage systems using these four algorithms

-[Lam79b].

Theorem 1: Using any of the four algorithms, if mi > 2 and mi 'C m j - 1

for some j then there exists a reference string which leaves the

system in a state where MLI does not hold.

This theorem implies that, if MLI is to be guaranteed, mi must be strictly

greater than mJ '1 for all j. In other words, the number of pages in each

level must be greater than the number of pages in the next higher level.

This is not a restrictive condition since one of the precepts of the

hierarchical design is to have the capacities of the levels increase from

top to bottom of the hierarchy.

V.

S- 34-

- -

Theorem 1 gives necessary conditions for MLI (and therefore MLOI) to

hold, but these conditions are not sufficient, as is shown by the next

theorem.

Theorem 2: Using LOCAL-LRU-SOP or LOCAL-LRU-DOP, if ml > 2, there

exists a reference string which leaves the system in a state

where MLI does not hold.

Based on this theorem, we reject the two algorithms using LOCAL-LRU as

potential candidates for DSH-III.

The next theorem gives conditions on m1 which guarantee that MLOI (and

therefore MLI) holds for all possible reference strings for the two

algorithms using GLOBAL-LRU.

Theorem 3: Using GLOBAL-LRU-SOP, if ml > 2, MLOI holds for any

reference string if and only if mi > m - 1. Using

GLOBAL-LRU-DOP, if ml > 2, MLOI holds for any reference string

if and only if mJ > 2mJ - 1.

This theorem gives fairly loose conditions (especially for GLOBAL-LRU-SOP)

on the relative sizes of the levels of a hierarchy which are sufficient to

guarantee that MLOI always holds.

Thus if a hierarchy is subject to the constraints of Theorem 3, we can

implement a READ strategy based on either GLOBAL-LRU-SOP or GLOBAL-LRU-DOP,

which constitutes a "good" algorithm based on the arguments presented so far

in this paper.

3.4.4.2 Performance Implications of MLI and MLOI

The performance benefits of a policy which attempts to maintain MLI and

MLOI have been discussed above, and are briefly summarized here. They

include

-35-

"a -- .
- ~ f

- support for a "preferred" overflow policy with no attendant data
transfer overhead

- conformance with the principle of using varying page sizes in
conjunction with page splitting in order to minimize expected
retrieval times

- enhancement of system availability by allowing intentional
(e.g., for preventive maintenance) or unintentional (e.g., in
case of failure) removal of a level without changing the logical
structure of the system or its data movement algorithms.

. The drawbacks associated with maintaining MLI and MLOI arise from two

sources

- extra complexity and processing overhead within each level

- extra interlevel communication overhead

* Each of these sources will contribute to a degradation in performance in

varying degrees, depending on the exact policy used to maintain MLI and

?ILOI.

As an example of one such policy, the reader is referred to Lam's

approach [Lam79a], which presents c set of READ and WRITE algorithms which

maintain MLI. This approach is based on the idea of associating with each

page at each level a USC (upper storage copy) flag which indicates whether

or not a sub-page of the page is resident in some higher storage level. Lam

-, uses a modified LRU replacement policy which selects the least recently used

* page which does not have its USC flag set as the candidate for replacement.

In order to maintain the correct USC flag values, a level must notify

the next lower level whenever it evicts the last sub-page of some page, X.

This policy is complicated by the possibility that the notification of the

. eviction of the last sub-page of X could occur simultaneously with a

READ-THROUGH for some other sub-page of X. This situation is called

* "erroneous overflow". Besides imposing a significant computational burden,

Lam's method of handling erroneous overflow makes unrealistic assumptions

-36-
z-,

about the hardware, i.e., that a message can be purged after it has been

sent, but before it has been received. Obviously, supporting this

capability involves very delicate and complex interactions between levels,

and enormously complicates the interlevel communication protocols. In

addition, there are a number of other subtle pathological cases such as

"racing requests", and "overflows to partially assembled blocks" that must

be dealt with.

While Lam's technique for maintaining MLOI has the advantage of being

conceptually simple (i.e., it is intuitively obvious that this algorithm

does, in fact, work), the intricate and computationally burdensome overflow

handling would render it impractical even if the required hardware could be

provided.

The algorithms proposed in this paper attempt to maintain MLOI by

implementing GLOBAL-LRU-SOP subject to the conditions of Theorem 3, above.

In essence, MLOI is obtained as a by product of the data movement algorithm,

and therefore we do not need to consider any of the pathological cases that

greatly increase the complexity of Lam's approach. The advantages of the

approach presented herein include

- no overhead for overflow handling

- avoidance of much of the computational complexity implied by
Lam's algorithms.

On the other hand, this approach has some disadvantages, including

- a need to perform strict LRU replacement

- a need to synchronize LRU updates between levels (in order to

perform GLOBAL-LRU properly)

- restrictions on the relative sizes of the levels of the
hierarchy, as specified by Theorem 3 (although, as noted before,
these restrictions are not constraining on any reasonable
design, that is, one for which the number of pages per level
increases from Level i to i+l). Furthermore, this restriction
is implicit in Lam's algorithms since obviously MLI can not be

37

,0V

maintained if mJ < mJ- for any j.

Table 3.3 sumarizes the comparison between Lam's READ algorithms and

- -the ones proposed in this paper.

Lam's Algorithms Proposed Algorithms

Replacement Policy unrestrictive fairly restrictive
Restrictiveness

Replacement Policy fairly high fairly low

Complexity

Overflow Handling moderate none
Overhead

*Constraints on loose loose
Hierarchy Structure

Table 3.3 - Comparison of Two Strategies for Maintaining MLOI

The only significant advantage of Lam's algorithms appears to be in the

first category, replacement policy restrictiveness, while its only

significant disadvantage is in the second category, replacement policy

complexity. Thus a choice between these two policies will turn on which of

the two categories has the greatest impact on performance. In point of

* fact, Lam' s simulation studies [Lam79a] showed that performance is limited

by bus bottlenecks, rather than processing bottlenecks, although these

studies appear to have been based on optimistic estimates of 1985

* micro-processor technology. Both Lam's algorithms and those proposed herein

represent an attempt to lower bus contention (by reducing the page transfers

needed to support overflow handling) at the expense of increased processing

* overhead and complexity. In light of Lam' s simulation results, this general

approach appears to be a plausible method of reducing the bus bottlenecks in

* -38-

% N

the system. With this in mind, the proposed algorithms, based on

GLOBAL-LRU-SOP, would seem to have an overall advantage, due to their lower

bus utilization and less complex replacement policy. A final choice between

the two policies will depend on the results of emulation studies to be

performed using a proposed Software Test Vehicle (STV) [To8l . On balance,

however, a set of algorithms based on GLOBAL-LRU-SOP would seem to have

almost all of the properties desirable in a data movement strategy, while

still being quite simple and efficient.

3.4.5 Implementation Issues for GLOBAL-LRU-SOP

This section discusses a number of issues relevant to the

implementation of a READ algorithm based on GLOBAL-LRU-SOP. For the sake of

brevity, from now on this algorithm will be denoted GLS. The issues to be

discussed are

1) pre-eviction of pages,

2) LRU update epoch selection,

3) LRU update synchronization, and

4) duplicate READ request handling.

A future paper will present the details of an efficient software

implementation of an LRU eviction algorithm.

3.4.5.1 Pre-eviction of Pages

Pre-eviction of pages refers to the process of selecting pages for

replacement before they are explicitly forced out of a level by a

READ-THROUGH (compare with post-purge used by Multics [Orga72]). Of course,

MLOI will be destroyed if a page with a sub-page in the next higher level is

evicted in this manner. A pre-eviction algorithm which does preserve MLOI

* - 39-

%m 4'.."

', can be deduced from the following theorem.

Theorem 4: Define SJ(X) to be the LRU stack position of page X in

the LRU stack at Level j. Thus SJ(X) - 1 for the most recently

referenced page, and SJ(X) - m J for the least recently

referenced page in Level j. Using GLOBAL-LRU-SOP, if ml > 2 and

mi > mi-1 , then for any page X in Level j and sub-page, Y, of X

in Level j-1, SJ-1 (Y) < k -> sJ(X) k.

Proof: First note that the statement of the theorem can be written

as SJ(x) < SJ 1 (Y). We will show that the theorem is true

immediately after any reference to Y, and that succeeding

* references do not change the inequality. Immediately after Y is

referenced, we have Sj(X) - $j-'(Y) = 1. A succeeding reference

either touches X, or it does not. If it does not reference X,

then as a result of the reference both SJ(X) and SJ-'(Y)

increase by one. If it does reference X, but does not reference

Y, then, as a result of the reference, SJ(X) - 1 and SJ-'(Y)

increases by one. In either case, the inequality holds. QED

What this theorem says is that a page is always closer to the top of the

stack than any of its children in higher levels. Based on this theorem, a

page, X, can be safely pre-evicted from Level j as long as SJ(X) > m J '1 + 1.

Intuitively, what is going on is that pre-eviction is reducing the effective

size of Level j, and as long as the effective size of Level j is not reduced

* below the limit specified by Theorem 3, MLOI will be preserved. This

ability to dynamically alter the effective size of a level is a reflection

of the "stack inclusion" property of stack algorithms, such as LRU ([att7O].

Note that the criteria for pre-eviction at Level j, as specified by

Theorem 4, depend only on the stack at Level j and the number of pages in

* - 40-

:4:Level j-1. Thus the pre-eviction algorithm does not depend on any

dynamically changing information which is not local to Level j
In practice, it will turn out that some pages in a level may be locked

against eviction. This would be the case if, for example, a page was in the

process of being retrieved in preparation for a READ-THROUGH, but the LRU

update for the page had not yet been performed. In this case, it is not

* possible to evict the locked page. In order to prevent this situation from

degrading performance, the pre-eviction algorithm does allow some deviation

from strict LRU eviction by skipping over locked pages. Once again, appeal

to the stack inclusion property of LRU shows that this process does not

* violate Theorem 3, and thus preserves MLOI.

One problem with pre-eviction is that if all pages, X, with

MJ' SJ(X < mJ are locked, then there are no candidates for pre-eviction

at Level j. Thus, Level j could run out of available page frames, and all

READ-THROUGH's from below Level j would be blocked.

To see that this blocking phenomenon can not cause a deadlock, note

that a level can only block levels below it. Therefore, Level 1 can never

be blocked in this fashion, and can always accept a READ-THROUGH (after

waiting for a previous READ being satisfied at Level 1 to complete, if

* necessary). Thus, Level 2 can not be involved in a deadlock because it can

always eventually initiate a READ-THROUGH to Level 1, thus freeing a page
-0

frame in Level 2. Similarly, this implies that Level 3 can never be

* involved in a deadlock, and so on for the rest of the levels in the

hierarchy.

One final problem with pre-eviction is that, by reducing the effective

*size of a level, it degrades system performance. Thus, the ideal

pre-eviction algorithm should strike a balance between not pre-evicting

44

enough pages (thus potentially blocking READ-THROUGHs temporarily), and

pro-evicting too many pages (thus reducing performance by reducing available

storage at some level).

3.4.5.2 LRU Update Epoch Selection

It is possible that some time might elapse between the initial READ

request and the reflection of the reference in the LRU stacks at the various

levels. The GLS algorithm attempts to perform the LRU update as closely as

possible in time to the point at which the actual READ-THROUGH of data to

Level 1 is performed. This policy has been adopted so that the LRU stacks

reflect as accurately as possible the sequence in which references are

satisfied, rather than the sequence in which they are initiated. This

4- policy seems to adhere most closely to the spirit of LRU replacement, and

minimizes anomalies wherein a page has become a candidate for eviction from

Level 1 before it has actually been retrieved. This would clearly be an

undesirable situation.

3.4.5.3 LRU Update Synchronization

V GLOBAL-LRU requires "simultaneous" LRU stack updates at each of the

levels. It is not necessary that an LRU update be processed at the same

time at each level. All that is required is that LRU updates be processed

in the same order at each level. This can be accomplished by merely

* processing LRU updates in FIFO order at each level. These updates will be

accomplished by broadcasting an LRU update message to all levels just prior

to initiation of a READ-THROUGH. The READ-THROUGH itself can not be used as

a synchronization signal because that would require that a READ-THROUGH be

sent to all levels, not just higher levels.

-42-

.

A ~ ~ S r - I"

3.4.5.4 Duplicate READ Request Handling

The final GLS implementation issue is duplicate READ request handling.

Suppose two READ requests, for pages Xl* and X2*, are received

simultaneously, and both X1* and X2* are sub-pages of the same page, X**, of

size N2. Also suppose that X** is not in Level 2 (implying that neither Xl*

nor X2* are in Level 1, by MLI). Without loss of generality, assume that

the request for Xl* reaches Level 2 before the request for X2*. Then, when

the request for X2* reaches Level 2, that level will already be expecting

X*e to be read through to Level 2, in order to satisfy the reference to Xl*.

We say that X** is "pending" at Level 2. Instead of forwarding the request

• for X2* to Level 3, Level 2 can hold the request until X** is transferred

into Level 2, and then continue processing the request for X2* as if X** had

been in Level 2 all along. This policy has been adopted in the expectation

that the processing overhead involved in keeping track of pending requests

will degrade performance less than processing duplicate requests (such as

the one for X**) independently, and thus incurring duplication of effort in

the retrieval of X*. This policy also avoids the complication of having

X** read through to Level 2 (as a result of the request for X2*) and finding

a copy of X** already in Level 2 (as a result of the request for Xl*).

- 3.5 WRITE Strategies

~~ We now turn to a discussion of the WRITE strategies employed by

0 DSH-III. It turns out that many of the problems encountered in designing

*, suitable WRITE algorithms have already been addressed in the development of

the READ algorithms for DSH-III. Indeed, many of the design issues

• mentioned previously were included in anticipation of their relevance to

specification of WRITE strategies for DSH-III. Therefore, the brevity of

.4
* -43 -

this section is not an indication that WRITE is simpler than READ, but

rather reflects the fact that READ and WRITE strategies have many common

issues and problems which have already been dealt with. With this in mind,

*this section will concentrate on those issues particularly relevant to

developing a WRITE strategy for a hierarchical storage system. These issues

include reliability, update consistency, and buffer management. As always,

the emphasis will be on maximizing performance, subject to constraints

imposed by considerations of reliability, maintainability, and cost.

The WRITE process is initiated by a user issuing the command

WRITE(requestid,virtualaddress,data).

* This command is passed, via the UBUS, to Level 1 of DSH-III. At this point,

Level 1 takes a number of actions in order to process the WRITE. These

actions include

- making duplicate copies of the updated data in local memory at
Level 1 in order to increase availability, i.e., in order to
decrease the chance of losing an update if there is a
(non-fatal) failure within Level 1,

- sending a "WRITE-complete" acknowledgement back to the user,

- ensuring that the Nl-byte page containing the virtual address to
be updated is present in Level 1,

- possibly combining the update with other updates for the same

page in Level 1, and

- initiating the process of transferring the update from Level 1
to the reservoir.

The remainder of this section will enlarge upon these points and

* Ojustify the data management policies implied by them.

-44-

3.5.1 Initial Level 1 WRITE Processing

In order to guard against the possibility of lost updates, Level 1 will

make a duplicate copy of every update. The copies of each update will be

kept in independent memory modules at Level 1, thus providing protection

against lost updates in the case of a memory failure at Level 1. Only after

the update has been duplicated will a WRITE-complete acknowledgement be

returned to the user. Thus, from a user's point of view, - WRITE will

complete almost as fast as a READ which is satisfied at Level 1. The

V. process of making a permanent copy of the update in the reservoir can now

proceed asynchronously with the handling of subsequent user requests.

* The first step in this process is to ensure that the Nl-byte page

containing the virtual address to be updated is present in Level 1. This is

done by issuing a READ for that page, if it is not in Level 1. In most

cases, however, the user will have read the page, preparatory to modifying

it, and the page will already be in Level 1.

-* The second step in this process is to transfer the updated N1-byte page

from Level 1 to the reservoir.

3.5.2 Alternative Store Policies

We refer to the process of transferring an updated page from Level 1 to

the reservoir as a Store process. There are four plausible Store policies

which will be presented here. They are

* - Store Through,

- Store Replacement,

- Store Behind, and

* - Staged Store Through.

0 -45-

The function of any of these four policies is to transfer an updated N 1 byte

page from Level 1 to Level r (or, more precisely, to an input buffer in

Level r).

Before discussing the pros and cons of these policies, we introduce the

concept of "coalescing" of updates. Suppose X* has been updated by the

request

WRITE(request_idl,Xl,newvalueofXl)

Further suppose that the request

WRITE(requestid2,X2,new valueforX2)

arrives after the previous update to X* but before the Store process for X*

* has been initiated. Now, rather than initiating two Store processes for X*,

the two updates, to sub-pages Xl and X2 of X*, can be coalesced and only one

(twice-updated) copy of X* need be transferred to Level r. The coalescing

of updates reduces the number of Store actions needed in this case by a

factor of two.

Now consider a series of WRITE requests. In the short term, these

requests can complete at a rate which is dependent mainly on the speed of

Level 1. In this case, one can view Level 1 as a buffer between the user

and the reservoir (which is the final repository for all updates). In the

long run, however, the average throughput for WRITEs is limited by the speed

of the I/0 devices in the reservoir. The effects of this limitation can be

mitigated in either of two ways:

1) reducing the number of updates reaching the reservoir, and

2) increasing (in some unspecified way) the effective size of the
buffer between the user and the reservoir.

Point 2 has the effect of making the system less sensitive to transient

peaks in the arrival rate of WRITEs, but does not address the fundamental

limitation on the average arrival rate of WRITEs imposed by the long term

-46 -

rate at which the reservoir can absorb the updates. Point 1 does address

this issue. For example, suppose k WRITEs per second is the highest rate

which can be supported without coalescing. Then a coalescing algorithm

which, on average, combined two WRITEs, as in the above example, would allow

the system to support, in the long run, a gross WRITE arrival rate of 2k per

second. The arrival rate of updates to the reservoir would be half this

rate, or k per second, which, by assumption, is within the processing

capacity of Level r. In general, if the system can coalesce an average of c

WRITEs into each Store action, it will be able to support a gross arrival

rate of WRITEs up to c times higher than the rate which could be supported

* with no coalescing. Since the ratio of READs to WRITEs is fixed for any

application, this implies that a coalescing strategy can have a significant

impact on overall system throughput. Of course, the overall improvement in

throughput would be less than the factor of c since coalescing does not

effect the rate at which READs can be processed.

A final point to be made regarding coalescing is that the degree of

coalescing attainable (i.e., the value of c) is dependent on two factors:

1) the amount of time that elapses between the receipt of an update
and the initiation of the Store for that update, and

2) the degree of WRITE locality exhibited by the system.

These two factors will play an important role in the selection of a suitable

Store policy for DSH-III.

We now turn to a discussion of the advantages and disadvantages of the

%four Store policies.

Y?

3.5.2.1 Store Through

4 Under a Store Through policy, as each update is received, Level 1

broadcasts it to all the lower levels. Under this policy, there is no

opportunity for coalescing at Level 1 and there is no flexibility in the

- choice of epoch at which the Store is performed. On the other hand, Store

* Through is inherently reliable, since the update is reflected to all levels

immediately. Under this policy, we could dispense with duplicating the

update at Level 1, as long as the WRITE complete acknowledgement was delayed

until after the update had been broadcast.

Finally, note that each update reaches the reservoir as part of an

* Nl-byte block.

3.5.2.2 Store Replacement

Under this policy, an updated page is held in Level 1 until it is

selected for replacement by the LRU replacement algorithm. It is then moved

to Level 2, where it is held until selected for replacement, at which time

it is moved to Level 3, and so on. As with Store Through, this policy

completely restricts the choice of epoch at which the Store is performed,

* and has the added drawback of imposing a delay on each eviction operation.

* On the other hand, Store Replacement does provide a maximal "window" during

which coalescing can take place, and, in fact, allows coalescing at each

level as the update is moved down the hierarchy.

3.5.2.3 Store Behind

A Store Behind policy attempts to alleviate the major drawback to Store

*Replacement, while retaining most of the advantages. Store Behind is

identical to Store Replacement except that the update is moved down from

* -48-

level to level whenever it is convenient (e.g., during idle bus cycles)

rather than when the page is evicted.

An availability enhancing modification to Store Behind, called

Two-Level Store Behind has been proposed (Lam79aJ.Unethsplc, ah

update is maintained in two adjacent levels, j and j4-l say, and not removed

from Level j until the update has been propagated from Level j+1 to Level

j+2. Thus, two copies of the update will exist at any time, providing

protection against the failure of any single level. This sort of

modification is clearly applicable to Store Replacement also.

Finally, note that both Store Replacement and Store Behind involve the

* transfer of increasingly larger blocks as the update moves down the

hierarchy. Under either policy, each update reaches the reservoir as part

of an Nrl'-byte block. These large update blocks could potentially lead to

bus contention or buffer management problems at Level r.

3.5.2.4 Staged Store Through

Both Store Replacement and Store Behind take advantage of coalescing at

every level, but could lead to excessive bus loads and/or Level r buffer

space requirements due to the large data blocks being moved under either

* policy. Additionally, the size of the data blocks associated with each

update reaching the reservoir could lead to excessive 1/0 loads on the

* . storage devices at Level r. Store Through, on the other hand, involves the

* transfer of relatively small data blocks (assuming that N' << Nrl1), but

does no coalescing, thus increasing the potential number of updates reaching

the reservoir by an order of magnitude or more, depending on the degree of

* WRITE locality exhibited by the system. Staged Store Through represents a

compromise attempt to combine the best features of Store Through and Store

* -49-

Behind. Under Staged Store Through, updated pages are held in Level 1 until

it is convenient for them to be broadcast to all lower levels. Therefore,

Staged Store Through can take advantage of coalescing at Level 1, while

restricting the size of the update blocks reaching the reservoir to N1

bytes.

It is also possible, under Staged Store Through, to perform some

coalescing in Level r for updates which are in the Level r buffer awaiting

transfer to permanent storage.

3.5.3 Evaluation of Alternative Store Policies

* Table 3.4 summarizes the tradeoffs among the four Store policies

discussed above.

Store Store Store Staged Store

Through Replacement Behind Through

degree of none very high high fairly high
coalescing

size of data N' Nt-I Nr-I N'
block reaching
level r

flexibilty of none none high high
update epoch

algorithmic very low moderate moderate lowU compexityTable 3.4 - Comparison of Four Store Policies

Based on these observations, the choice of Store policy would appear to be

between Store Behind and Staged Store Through. The relative merits of these

policies will depend on the degree of coalescing achievable in Levels 2 to

-50 -

% % %~

r-1, the relative magnitudes of N' and N'-', and the relative speeds of the

various levels. The STV will provide a framework for deciding between these

two policies. The algorithms presented in this paper are based on Staged

Store Through because it involves somewhat less algorithmic complexity.

We close this discussion by pointing out how each of Store Behind and

Staged Store Through attempt to take advantage of the two strategies for

increasing WRITE performance mentioned above, namely, reducing the effective

number of updates and increasing the effective buffer size. Table 3.5

summarizes these concepts.

0Store Behind Staged Store Through

reducing the number coalesces at coalesces at
of updates reaching each level Level 1 only
the reservoir

increasing effective uses entire transfers updates
size of the buffer hierarchy as in N1-byte pages,
between a user and a buffer as opposed to
the reservoir Nr-l-byte pages

(i.e., uses less
buffer space for
each update)

Table 3.5 -Comparison of Performance Enhancing Strategies

-51-

4 SUMMARY AND FURTHER RESEARCH

The major goal of this paper was to present a coherent summary of the

design issues and tradeoffs involved in the specification of an architecture

for a Data Storage Hierarchy. While a lot of issues were raised and a lot

of options discussed, most of the arguments pro and con in any area were

based on experience with storage and file systems in general, and on

intuition with regard to how a hierarchical system should behave under

various conditions. There is very scanty relevant empirical data in this

area. Performance evaluations of this type of structure [Lam79a, Wang8lJ

have used macroscopic modeling methods such as simulation (e.g., GPSS),

0 analytical queueing models [Reis75], and Operational Analysis [Denn78].

These efforts have provided valuable insights into the behavior of a

hierarchical storage system under various macroscopic conditions (e.g.,

differing locality assumptions). However, these studies could not (because

of the nature of their modeling methodologies) examine the reaction of the

' system to changes in microscopic architectural details, such as the choice

of a replacement algorithm. The Software Test Vehicle (STV) [To8l],

currently being built, will provide valuable insight into the effects of

varying many of the detailed design parameters of DSH-III. These detailed

*simulation results could then be fed back as parameters into a GPSS or

%analytical model. This would allow examination of the macroscopic effects

%of microscopic design changes, thus answering many of the questions that

were left open because of a lack of empirical performance data.

A future paper will present the design of a multi-processor

implementation of DSH-II. Continuing work includes the design of a

* multi-processor operating system which can support the high throughput rates

required by DSH-III. A major focus of the operating system design is

* - 52-

V V

reliability and error recovery capability.

Another forthcoming paper will present a set of algorithms and

transaction protocols which implement the READ and WRITE and automatic data

migration functions of DSH-III.

An STV implementation of these algorithms is planned. As noted above,

the STV will allow investigation of various design questions. These include

- what is the best WRITE policy: Store Behind, Store Through,
Store Replacement, or Staged Store Through?

- what is the best replacement policy? The basic algorithm,
GLOBAL-LRU-SOP, will still work if LRU is replaced by any other
replacement policy for which Theorem 4 holds. Perhaps there is
a replacement policy which performs approximately as well as
LRU, but which is easier to implement.

Investigation of the pros and cons of these and other design issues will be

the subject of future research.

-
.1

Bibliography and References

[Abde8l]: Abdel-Hamid, T.K. and Madnick, S.E., 'A Study of the
Multicache-Consistency Problem in Multi-Processor Computer Systems,'
Proc. Sixth Workshop on Computer Architecture for Non-Numeric
Processing, 1981.

[Abe77]: Abe, Y., 'A Japanese On-Line Banking System,' Datamation,
September 1977, pp 89-97.

[Abra79]: Abraham, M.J., "Properties of Reference Algorithms for
Multi-Level Storage Hierarchies,' Master's Thesis, Sloan School of
Management, MIT, Cambridge, MA, June 1979.

[Bart77]: Bartlett, J.F., 'A "NonStop" Operating System,' Tandem Computers
Inc., Cupertino, CA, 1977.

[Bela66]: Belady, L.A., 'A Study of Replacement Algorithms for a
Virtual-Storage Computer,' IBM Systems Journal, Vol. 5, No. 2, 1966, pp
78-101.

[Fela69): Belady, L.A., Nelson, R.A. and Shedler, G.S., 'An Anomaly in
Space-Time Characteristics of Certain Programs Running in a Paging
Machine,' Comm. ACM, Vol. 12, June 1969, pp 349-353.

[Denn78]: Denning, P.J. and Buzen, J.P., 'The Operational Analysis of
Queuing Models,' Computing Surveys, Vol. 10, No. 3, September 1978.

[Dijk68]: Dijkstra, E.W., 'The Structure of the "THE" Multiprogramming
System,' Comm. ACM, Vol. 11, May 1968, pp 341-346.

[Gree75]: Greenberg, B.S. and Webber, S.H., 'MULTICS Multilevel Paging
Hierarchy,' IEEE Intercon, 1975.

[Hsu8O]: Hsu, N., 'A Preliminary Architectural Design for the Functional
Hierarchy of the INFOPLEX Database Computer,' Working Paper No.
WP1197-81, Sloan School of Management, MIT, Cambridge, MA, November
1980.

[IBM3033]: 3033 Processor Complex & 3033 Multiple Processor Complex
Functional Characteristics, Form No. GA22-7060, International Business
Machines Corp., White Plains, NY.

[IBM3850]: IBM 3850 Mass Storage System (MSS) Principles of Operation, Form
No. GA32-0036, International Business Machines Corp., White Plains,
NY.

* L [Lam79a]: Lam, C., 'Data Storage Hierarchy Systems for Database Computers,'
Doctoral Thesis, Sloan School of Management, MIT, Cambridge, MA, August
1979.

-54-

[Lam79b]: Lam, C. and Madnick, S.E., 'Properties of Storage Hierarchy
Systems With Multiple Page Sizes and Redundant Data,' ACM Transcations
on Database Systems, Vol. 4, No. 3, September 1979, pp 345-367.

[Madn73]: Madnick, S.E., "Storage Hierarchy Systems,' Report No. TR-105,
Project MAC, MIT, Cambridge, MA, 1973.

[Madn77]: Madnick, S.E., 'Trends in Computers and Computing: The
Information Utility,' Science, Vol. 185, March 1977, pp 1191-1199.

[Madn79): Madnick, S.E., 'The INFOPLEX Database Computer: Concepts and
Directions,' Proc. IEEE Comp. Con., Februrary 1979, pp 168-176.

[Matt70]: Mattson, R.L., Gecsei, J., Slutz, D.R. and Traiger. I.L.,
'Evaluation Techniques for Storage Hierarchies,' IBM Systems Journal,
Vol. 9, No. 2, 1970, pp 78-117.

[Orga72]: Organick, E.I., The Multics System: An Examination of Its
Structure, Cambridge, MA: MIT Press, 1972.

[Reis75J: Reiser, M. and Kobayashi, H., 'Queuing Networks with Multiple
Closed Queues: Theory and Computational Algorithms,' IBM Journal of
Research & Development, Vol. 19, No. 3, May 1975.

[Robi79J: Robidoux, S.L., 'A Closer Look at Database Access Patterns,'
Master's Thesis, Sloan School of Management, MIT, Cambridge, MA, June
1979.

[Rodr76J: Rodriguez-Rosell, J., 'Empirical Data Reference Behavior in Data
Base Systems,' Computer, November 1976, pp 9-13.

[Simo75]: Simonson, W.E. and Alsbrooks, W.T., 'A DBMS for the U.S. Bureau
of the Census,' Proc. Very Large Data Bases, September 1975, pp
496-497.

[To8l]: To, T., 'SHELL: A Simulator for the Software Test Vehicles of the
INFOPLEX Database Computer,' Bachelor's Thesis, MIT, Cambridge, MA,
June 1981.

[ToonBO]: Toong, H.D., Strommen, S.O. and Goodrich II, E.R., 'A General
Multi-Microprocessor Interconnection Mechanism for Non-Numeric
Processing,' Proc. Fifth Workshop on Computer Architecture for
Non-Numeric Processing, 1980, pp 115-123.

(Wanggl]: Wang, R. 'Performance Evaluation of the INFOPLEX Data Base
Computer,' Sloan School of Management, MIT, work in progress.

-55-

*1 ~S

• 2

FILM ED

DT IC
5L

